ACDLS

A Motion Picture Content Rating Model for Supporting Automatic Classification using Deep Neural Network

Monica Gruosso¹, Nicola Capece², Ugo Erra¹, Nunzio Lopardo¹ ¹Department of Mathematics, Computer Science and Economics ²School of Engineering

monica.gruosso@unibas.it, nicola.capece@unibas.it, ugo.erra@unibas.it, nunziolop95@gmail.com

Introduction

The film industry brings thousands of films to life every year. Not all of them are suitable for all ages, especially those with violent scenes. Since **content rating** can be tedious and prone to personal judgment, it is necessary to identify **objectively inappropriate elements** within videos.

Results of the 1st test phase

Non-violent frame (G class)

Violent frame (PG-13 class)

Very violent frame (R class)

Goal

Provide a motion picture content rating model to **automatically classify and censor violent scenes** using a Deep Learning approach.

Our Idea

We developed two models based on Inception v3 architecture (three-class and binary classifier). Some modifications were made to improve both **deep neural networks** performances, avoid overfitting, and increase the generalization level.

Dataset and Training

We collected a **large amount of data** searching for visual elements, such as blood, weapons, or fire, and **manually labeled** them according to a rating scale. The training was performed using MATLAB and Nvidia GeForce GTX 1080 Ti GPU (three-class classifier: 23h; binary classifier: 4h).

3.3%	2.8%	26.3%	19.0%
66.0%	83.5%	79.0%	76.1%
34.0%	16.5%	21.0%	23.9%
G	PG-13	R	
Target Class			

11.8%	6.4%	9.1%
G	R	
Target		

Refinement Algorithm

We designed an algorithm to refine the network output in the 2nd test phase (video as input data).

Train/Val Dataset	Test Dataset
17,000 images per class (random 90% for train and 10% for val)	1,850 images per class

Conclusions

We proposed a model for supporting content rating. The interesting preliminary results obtained encourage further investigations on the use of Deep Learning.

ACDL 2019 – 2nd Advanced Course on Data Science & Machine Learning Certosa di Pontignano (Siena), Italy – July 15-19, 2019